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STRESS STATE IN GLASS BODIES DEGASSED

UNDER HEATING BY INFRARED RADIATION

UDC 539.3A. R. Gachkevich, T. L. Kurnitskii, and R. F. Terletskii

A model is proposed to calculate stresses in a glass layer with gas impurities heated by thermal
infrared radiation. Calculations were performed for a layer with a diatomic impurity of nitric oxide
and a triatomic impurity of water. It is shown that for the radiation parameters and impurity
concentrations considered, the presence of nitric oxide in the layer does not influence its stress state,
whereas the presence of water leads to a certain increase of stress. The stress state of the layer is
determined by the level of thermal stresses, and the concentration stresses and the stresses due to the
mass forces of radiation are negligible. An increase in the rate of diffusion of the diatomic impurity
due to a change of the radiation spectrum is accompanied by an increase of thermal stresses.

Introduction. The production of “pure” glass materials without gas impurities is an important technolog-
ical problem of the electronic industry. It arises, in particular, in the production of electron-beam tubes, vacuum
tubes, light guides, and other devices whose elements are made of glass [1, 2]. Various gas impurities in the molecular
state, in particular, H2O, CO, N2, CO2, H2, etc., can be dissolved in glass [2–4]. These impurities result from both
the manufacture of glass and adsorption from the ambient gas and diffusion into the material. Degassing of the
glass units of the indicated devices is carried out by convective heating [4, 5]. This degassing method is based on a
considerable increase in diffusion flows of a gas impurity in glass under an increase in the diffusion coefficient of the
impurity D(T ) = D0 exp(−Uact/(RT )) (D0 is the preexponent, Uact is the activation energy of diffusion, and R is
the universal gas constant) with rise in temperature T . Therefore, for high-quality degassing of glass, i.e., removal
of gas impurities from deep layers, glass should be heated to the maximum possible temperature (determined by the
temperature of transformation of glass [2], which usually does not exceed 700 K) and then held at this temperature
for a time. Since the heating rate of glass elements is limited because of the high temperature stresses arising from
convective heating, [5], the degassing process is lengthy and requires considerable expenditures of energy.

The possibility of increasing the unit capacity and decreasing energy expenditures in degassing electron-beam
tubes has been studied theoretically and in experiments on heating their glass shells by thermal infrared radiation
produced by conventional sources with various power and spectral characteristics. In particular, distributions of
temperature and stress-tensor components in a glass shell heated by radiation from KG 220-1000-6 tubes were
studied. Optimal (in thermal stress) combined modes of radiant-convective heating of glass shells that ensure
the maximum possible heating temperature at smaller power inputs were proposed [5, 6]. Experiments showed
that under radiant heating of glass shells, gas release from the glass increases considerably [6]. The indicated
increase cannot be explained only by the above-mentioned temperature dependence of the diffusion coefficient
of gas impurities but it is also a result of the special effect of radiation on the impurity (referred to as photo-
stimulated diffusion in the literature [7]). The increase of gas release is due to the volumetric nature of infrared
radiation absorption by translucent materials and due to an increase in the energy of diffusing impurity particles
as a result of intense radiation absorption in definite spectral regions, in particular, in the infrared region, which
contains typical absorption frequencies of gas molecules. Thus, to design rational modes of degassing for bodies
made of glass materials using thermal infrared radiation, it is necessary to study the effect of heat-transfer process
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on the gas impurity concentration and glass deformation taking into account the dependence of the parameters of
these processes on the external radiation spectrum, the amount and type of gas impurities, and conditions of heat
and mass exchanger with the ambient medium.

1. Mathematical Model of Mechanothermodiffusion Processes in a Translucent Body with Gas
Impurities on Exposure to Thermal Irradiation. We use the model proposed in [8–10] for a quantitative
description of mechanothermodiffusion processes in translucent multicomponent solids (solid mixtures) exposed to
external infrared electromagnetic radiation, which is based on the phenomenological theory of radiation and the
continual thermodynamic theory of solid mixtures. The model assumes that the processes occurring in a solid
are caused by heat release (due to absorption and radiation of electromagnetic energy by its components) and the
ponderomotive (mechanical) forces of radiation effect on individual components. The energy state of the components
is described by introducing additional parameters — the specific energies of the components — for which balance
equations are formulated and a procedure of approximate solution is developed.

Let us consider a glass body which contains N gas impurities. The body (solid mixture) consists of the main
material (skeleton) and impurity atoms and molecules diffusing in it. The term of “gas impurity” means that in
the natural state, the particles of a particular impurity form the corresponding gas. Displacements and strains of
mass points of a glass body are related to displacements and strains of mass points of the skeleton, whose rate of
motion is chosen as the characteristic one. At an arbitrary time t, the impurities are distributed in the bulk of the

body with densities ρk(r, t) and concentrations ck(r, t) = ρk(r, t)/ρ(r, t). Here ρ =
N∑
k=1

ρk + ρm is the density of

the body, ρm(r, t) is the density of the skeleton, and
N∑
k=1

ck +
ρm

ρ
= 1. Let the glass body considered be exposed

to external infrared radiation, which is specified in the ambient medium by the spectral intensity Iext
λ (r, s0). For

thermal radiation, this intensity is proportional to the spectral radiation intensity of an ideal black body Iλb(λ, Ts)
at the temperature Ts of the radiation source [11, 12]:

Iext
λ (r, s0) = fλ(r, s0)Iλb(λ, Ts).

Here r is the radius-vector, s0 is the unit vector in the direction of beam propagation, λ is the wavelength, and
fλ(r, s0) is a proportionality constant, which depends on the position of the real radiation source relative to the
body and its energy and spectral characteristics. Let us assume that the material of the examined glass body does
not scatter the radiation and piezo- and electrooptical effects can be ignored. Then, radiation transport in the
body (in the temperature range of interest 300 K < T < 700 K) can be described by the following quasistationary
transport equation in the approximation of a nonradiating material [11]:

∂Iλ(r, s0)
∂s

+ aλ(c1, . . . , cN )Iλ(r, s0) = 0. (1.1)

Here Iλ(r, s0) is the spectral radiation intensity in the body, s is the distance along the beam, and aλ(c1, . . . , cN )
is the spectral absorption coefficient, which depends on the impurity concentration at a given point of the body. It
should be noted that the reference literature, as a rule, gives values of this coefficient for pure glasses. From the
physical meaning of the absorption coefficient (which characterizes radiation attenuation in the body as a function
of the number of absorption centers [13]) taking into account well-known experimental results on spectroscopy of
glasses with gas impurities, which indicate that absorption properties typical of gases are preserved in glass, for the
absorption coefficient of the mixture considered, we obtain the expression

aλ = amλ +
N∑
k=1

akλ,

where amλ and akλ are the spectral absorption coefficients of the skeleton and the kth gas impurity in the glass body.
Here and below, the superscript m corresponds to the characteristics of the skeleton.

To determine the quantities amλ and akλ, we consider features of radiation absorption by the glass components.
Solids absorb radiation practically over the entire spectrum. Therefore, the absorption coefficient of the skeleton is
usually represented as a piecewise constant function: amλ = a1 for 0 6 λ 6 λc and amλ = a2 for λc < λ 6 ∞ (λc is
the threshold wavelength) [14]. The coefficient of radiation absorption by structural particles (atoms, molecules,
ions) is determined primarily by internal processes occurring in them during interaction with radiation and by the
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amount of particles. The effect of the surrounding (particles can enter in the composition of the gas, a mixture of
gases or a solid body) on values of the absorption coefficient is taken into account by a correction calculated using
relevant models of spectroscopy [11, 13, 15].

Molecular (atomic) gases absorb radiation in narrow segments of the spectrum — bands (lines). The number
of absorption bands nk for the kth gas is determined by the number of atoms in its molecule. The absorption coeffi-
cient of the kth gas in a band l can be expressed in terms of well-known characteristics of bands by the formula [13]
akλl = Jkl /∆λ

k(eff)
l , where Jkl is the band intensity and ∆λk(eff)

l is its effective width. Within the framework of the
exponential wide-band model [13, 15], the indicated characteristics can be calculated for a constituent gas of a gas
mixture at various temperatures and pressures. For gas impurities in solids, such models are not available. How-
ever, taking into account collisions, described by hydrostatic or phonon pressure, the relations of the exponential
wide-band model can be used to calculate the absorption characteristics of gas particles in a solid. Because of the
linear dependence of the absorption coefficient of a gas on its density, the absorption coefficient of a gas impurity
as a component of a multicomponent body can be written as akλ = akλ∗ck, where akλ∗ = akλ,atmρ/ρ

k
atm (akλ,atm and

ρkatm are the absorption coefficient and density of the gas particles at atmospheric pressure, respectively). Thus,
the absorption coefficient of glass under irradiation is written as

aλ = amλ +
N∑
k=1

akλ∗ck. (1.2)

From the equations of energy balance and radiation momentum [11, 16], we determine the volume densities
of heat release

Q(r) =

∞∫
0

aλ(c1, . . . , cN )

( ∫
Ω=4π

Iλ(r, s0) dΩ

)
dλ (1.3)

and the ponderomotive forces

F (r) =
1
c0

∞∫
0

aλ(c1, . . . , cN )

( ∫
Ω=4π

Iλ(r, s0)nΩ dΩ

)
dλ (1.4)

in glass. Here Ω is the solid angle and c0 is the electrodynamic constant. In the continual model of a solid mixture,
the magnitudes of volume heat releases and forces in the body are related to similar quantities Qk and fk calculated
per unit mass of the components by the relations

Q = ρ
(

(1− c)Qm +
N∑
k=1

ckQk

)
, F = ρ

(
(1− c)fm +

N∑
k=1

ckfk

)
, (1.5)

where c =
N∑
k=1

ck. Using relations (1.3)–(1.5) and representation (1.2) for the absorption coefficient, we obtain

expressions for the specific (per unit mass) densities Qk and Qm of the energy absorbed by the impurities and the
skeleton and the ponderomotive forces fk and fm of radiation effects on the impurity and the skeleton, respectively.

To describe the diffusion of gas impurities in glass, we use the equations of mass balance for the components
of a solid mixture. Then, in the absence of chemical reactions in glass, for the gas components we obtain the
equations

ρ
∂ck
∂t

= −divJk, (1.6)

which relate the mass flow of the kth gas around the skeleton Jk to the change of its concentration. According to
the model of diffusion under irradiation proposed in [9, 10, 17], we assume that transport of the gas impurity is due
to the following:

(a) nonuniform distribution of the impurity concentration

Jkc = −ρDr
k(Ek) grad ck, (1.7)

where Dr
k(Ek) = Dk(T ) exp[Ukact/(RT (1 − RT/Ek))] is the diffusion coefficient under irradiation, Ek(r, t) is the

mean energy of 1 mole of the kth gas which absorbs radiation, whose value is larger than the mean energy RT of
thermal oscillations in the body;
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(b) nonuniform temperature distribution in the body (thermal diffusion) and the corresponding thermal-
diffusion flux

JkT = −ρDr
k(æTk /T ) gradT,

where æTk is the thermal-diffusion ratio for the kth impurity;
(c) the action of ponderomotive forces on the impurity (“forced diffusion”) and the corresponding flux

Jkf = −(ρDr
k(Ek)/Ek)MkM

mckc
m(ck/Mk + cm/Mm)(fk − fm),

where Mm and Mk are the molecular masses of the skeleton and the impurity.
Substituting relation (1.7) into Eq. (1.6), we obtain diffusion equations for the gas impurities in the glass

body under infrared irradiation.
Using the equation of the energy Ek of the kth impurity and modeling the interaction of gas impurity with

external radiation by collisions with photons and the interaction of the impurity with the skeleton by collisions with
phonons, and employing the theory of random walks (jumps) of diffusing impurity particles between nodes of the
skeleton [20], Gachkevich et al. [17–19] obtained the following approximate expressions for Ek:

Ek(r, t) =

{
(Qk(r, t)/γ0)t+RT0(r) for Lk(r, t)� 1,

RT (r, t) for Lk(r, t) 6 1.
(1.8)

Here

Lk(r, t) =
Nk∑
l=1

Iλkl (r, t)∆λk(eff)
l d2

k

~ωkl pk
=
Npt
k (r, t)d2

k

pk
, (1.9)

where Iλkl (r, t) is the radiation intensity at a given point of the body at a frequency ωkl of the lth absorption band
of the kth gas impurity, ω = 2πv/λ, v is the rate of radiation propagation in the examined material, ~ is the
Planck constant, dk is the molecular diameter of the kth gas, pk is the frequency of interaction of molecules of
the kth impurity with phonons, which is set equal to the frequency of their diffusion jumps, Npt

k is the number of
absorption bands of the kth gas, and γ0 is a coefficient. The accumulation of energy by an impurity, i.e., an increase
in the value of Ek continues until the energy absorbed by the impurity becomes equal to the energy dispersed
in thermal oscillations of the skeleton (or until the frequencies of photon and phonon interactions become equal)
[17, 18]. Therefore, the maximum value of Ek that can be determined from relations (1.8) and (1.9) should satisfy
the condition

Npt
k d

2
k = (D0k/(zkl2k)) exp(−Ukact/E

k),

where lk is the length of a diffusion jump of particles of the kth impurity, determined by the average distance
between the nodes in the skeleton and zk is a geometrical coefficient that depends on the structure of the skeleton
and the number of possible equivalent positions for the jump [20, 21]. Because the values of lk and zk differ little for
different types of glass, the values of Ek are determined by the known experimental characteristics D0k and Ukact.

The equations of radiation transport (1.1) and diffusion of the gas impurity (1.6) and the relations for
the energy of the impurity Ek (1.8) and (1.9) together with the equations of quasistatic thermoelasticity [22] (in
which the quantities Q and F are volume sources of heat and volume forces) and constitutive relations for a linear
thermoelastic body with impurities [23, 24]

σij = 2Gεij +
[(
K − 2

3
G
)
e−K

(
α(T − T0) +

N∑
k=1

βk(ck − c0k)
)]
δij

(σij and εij are the stress- and strain-tensor components, e = εαα, K and G are elastic constants, α and βk are
the thermal- and concentration-expansion coefficients, and δij is the Kronecker delta) form a complete system of
equations describing the heating and deformation of a glass body and diffusion of gas impurities in it on exposure
to thermal infrared irradiation. The indicated equations are supplemented by boundary and initial conditions. The
initial conditions specify the temperature distribution T0(r) and the impurity concentration c0k(r) at the initial
time.

The radiation boundary conditions are formulated using the balance of all radiation fluxes delivered to the
body surface (including those rereflected inside it) [12]. These conditions relate the radiation intensity on the
surface to the given intensity of the thermal radiation source in the ambient medium Iext

λ (r, s0) for known spectral
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reflectivity Rλ and refractive index nλ. Thermal boundary conditions are formulated with allowance for conditions
of heat exchange between the glass body and the ambient medium. These conditions have the form of known
thermal conditions of the first, second, and third kind. Accurate boundary conditions of mass transfer are obtained
from the balance of fluxes of the gas impurity on the body surface [3] and allow for the adsorption and desorption
of gases. However, these conditions can be replaced by the Newton mass-transfer conditions

Jk · n = β̄k(ck − c∗k),

where n is the outward normal to the surface of the glass body, β̄k is a known constant expressed in terms of the
characteristics of the ambient medium and the body surface, and c∗k is a quantity that depends on the concentration
of the kth impurity in the ambient medium. Under conditions of evacuation of gases, low pressure occurs in the
ambient gas medium, which can be treated as vacuum. Then, on the part of the body surface in contact with
vacuum, we set c∗k = 0. It is assumed that on this surface, heat insulation conditions are satisfied because of small
convection fluxes [6].

The formulation of mechanical boundary conditions on the surface of the glass body depends on the method
of fastening the body and the external loads applied.

2. Numerical Calculations. We consider an infinite glass layer of thickness h0 which contains impurities
of nitrogen oxide (NO) and water (H2O) (distributed uniformly over the layer thickness with concentrations c01

and c02 at the initial time t = 0) and is exposed to the thermal infrared radiation generated by a plane surface
(plane) which is parallel to the layer and heated to a temperature Ts. The surface is at a distance h∗ from the basis
of the layer in the region z∗ < 0 (z∗ is the coordinate along the layer thickness) of the ambient medium, which
is considered transparent to radiation [11, 12]. Free convective heat and mass exchange with the ambient gaseous
medium containing gas impurities considered occurs through the surface of the layer z∗ = 0, and the surface z∗ = h0

is contact with vacuum. The surfaces of the layer z∗ = 0 and z∗ = h0 are free of loading, and its edges (x → ±∞
and y → ±∞) are rigidly fastened. The thermal radiation of the heated surface is considered diffusive, and its
intensity is equal to

Iext
λ = fλIλb(λ, Ts), Iλb(λ, Ts) = 2πC1/{λ5[exp(C2/(λTs))− 1]}, (2.1)

where C1 = ~c0 and C2 = ~c0/k
∗ (k∗ is the Boltzmann constant).

From the above equations of the model, we obtain a complete system of equations describing radiation
transport and mechanothermodiffusion processes in the layer. If in the heat equation, we ignore thermoelastic
dissipation of energy, the heat transferred by impurity particles during diffusion, and the effect of ponderomotive
forces on the stress state [16], this system takes the form

I+
λ (z, v) = I+

λ (0, v) exp(−zθλ/v), I−λ (z, v) = I−λ (1, v) exp(−(1− z)θλ/v); (2.2)

I+
λ (0, v)− 2Rλ

1∫
0

v0I
−
λ (1, v0) exp

(
− θλ(1− z)

v0

)
dv0 = n2

λ(1−Rλ)Iext
λ (ξ),

(2.3)

I−λ (1, v)− 2Rλ

1∫
0

v0I
+
λ (0, v0) exp

(
− θλz

v0

)
dv0 = 0;

∂2T

∂z2
− ∂T

∂τ0
=
h2

0

η
Q(ck, z),

Q(ck, z) = ρ(1− c)Qm(z) + ρ
N∑
k=1

ckQk(ck, z),

Qm(z) =
2π

ρ(1− c)

∞∫
0

1∫
0

amλ (I+
λ (z, v) + I−λ (z, v)) dv dλ,

Qk(ck, z) =
2π
ρck

∞∫
0

1∫
0

akλ(I+
λ (z, v) + I−λ (z, v)) dv dλ,
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fm(z) =
1

c0ρ(1− c)

∞∫
0

1∫
0

amλ (I+
λ (z, v)− I−λ (z, v))v dv dλ,

fk(ck, z) =
1

c0ρck

∞∫
0

1∫
0

akλ(I+
λ (z, v)− I−λ (z, v))v dv dλ,

(2.4)

∂ck
∂τk

= − ∂

∂z

{
Dr
k

[MkM
m

Ek
ckc

m
( ck
Mk

+
cm

Mm

)
(fzk − fmz )− ∂ck

∂z
− æTk

T

∂T

∂z

]}
,

σxx = σyy =
E

1− ν

(
α(T ∗ − T ) +

1 + ν

3(1− 2ν)

2∑
k=1

(c∗k − ck)
)
,

T ∗ =
1
2

1∫
0

T (z, τ0) dz, c∗k =
1
2

1∫
0

ck(z, τk) dz,

Ek(z, τ0) =

{
(Qk(ck, z)/γ0)τ0 +RT0(z) for Lk(z, τ0)� 1,

RT (z, τ0) for Lk(z, τ0) 6 1,

Npt
k d

2
k = (D0k/(zkl2k)) exp(−Ukact/E

k), k = 1, N.

Here I+
λ (z, v) and I−λ (z, v) are the spectral radiation intensity in the layer in the directions that form an acute angle β

and an angle π− β with the z∗ axis, z = z∗/h0 is the dimensionless coordinate along the layer thickness, v = cosβ,
ξ = arcsin (nλ

√
1− v2), θλ = aλh0 is the optical thickness of the layer, Rλ and nλ are the spectral coefficients of

diffusive reflection and refraction on the surface of the layer, respectively, τ0 = χt/h2
0 and τk = D0kt/h

2
0 are the

Fourier criteria, η and χ are the thermal conductivity and diffusivity, and E, ν, and α are the elastic modulus,
Poisson’s ratio, and the linear temperature-expansion coefficient, respectively.

Under the assumptions on features of heat and mass transfer, the boundary conditions of heat and mass
transfer on the surfaces of the layer z = 0 and z = 1 take the form

∂T (0, τ0)
∂z

− Bi(T (0, τ0)− Text) = 0,
∂T (1, τ0)

∂z
= 0,

[
h0

Mk

Ek
(fk(0)− fm(0))− Bi∗k(0)

]
ck(0)− ∂ck(0)

∂z
= −Bi∗k(0)c∗k(0)− æTk

∂T (0)
∂z

, (2.5)

[
h0

Mk

Ek
(fk(1)− fm(1)) + Bi∗k(0)

]
ck(1)− ∂ck(1)

∂z
= 0.

Here Bi and Bi∗k = β̄kh0/(ρDr
k) are the Biot criteria for heat and mass transfer, respectively; the quantities β̄k

and c∗k are expressed in terms of known characteristics of absorption and desorption processes on the surface of the
material considered and the impurity concentration in the ambient medium [3].

The obtained coupled system (2.1), (2.2), (2.4) with boundary conditions (2.3) and (2.5) was solved by
iterations using the finite-difference method in each approximation. As a zero approximation, we used the solution
of the system obtained for the absorption and diffusion coefficients and the values of Qk, Qm, fk, and fm calculated
from known initial distributions of temperature and impurity concentrations. Numerical calculations were carried
out for a layer of S93 glass 1 cm thick. The thermal and radiative characteristics of the glass were taken from [2,
3, 14]. The characteristics of the absorption bands of gases were calculated using the data of [15]. The diffusion
characteristics of nitric oxide were calculated with satisfactory accuracy from the results obtained in [25], and the
diffusion characteristics of water were taken from [26]. We assumed that the initial impurity concentrations were
constant along the thickness and equal to c01 = c02 = 0.001, the quantities c∗k were equal to zero, and Bi = Bi∗ = 1
on both surfaces of the layer. The initial temperature of the body and the ambient temperature were considered
equal: Text = T0 = 300 K. To study the effect of the radiation spectrum on the examined processes in the body, we
considered the action of sources with temperatures Ts = 1000, 2000, 3000 K, and in all cases, the integral radiant
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Fig. 1

Fig. 2 Fig. 3

flux into the body was identical by a proper choice of the coefficient fλ. In all cases, the duration of the radiation
effect was 2 h.

Figure 1a shows concentration distributions for the diatomic nitric oxide impurity along the layer thickness
under irradiation whose spectrum corresponds to source temperatures Ts = 1000 (curve 1) and 3000 K (curve 2).
From Fig. 1a it follows that the diffusion rate depends on the radiation spectrum and is maximal at Ts = 1000 K.
This is explained by the fact that for diatomic molecules of nitric oxide there is one fundamental absorption band
at a wavelength of 5.3 µm. More radiation energy falls in this absorption band at Ts = 1000 K than at Ts = 3000 K,
because of which the energy of nitric oxide Ek and its diffusion coefficient D(ENO) are maximal. It should be noted
that the diffusion rate is much lower if the layer is heated convectively to the maximum possible temperature [2] at
the maximum possible heating rate (which is determined by the strength properties of glass) and then is held until
the total heating time becomes equal to 2 h.

Figure 1b shows concentration distributions for water (curve 1) and nitric oxide (curve 2) at Ts = 1000 K.
For triatomic molecules of water there are several absorption bands in the infrared region, as a result of which they
absorb more radiation energy than diatomic molecules of nitric oxide. However, because the diffusion coefficient of
water is much smaller than the diffusion coefficient of nitric oxide, the diffusion rate of nitric oxide is higher. The
diffusion of diatomic NO molecules depends on the radiation spectrum. In contrast, for H2O molecules, which have
several absorption bands in the infrared range, variation of the radiation spectrum (with variation in Ts from 1000
to 3000 K) practically does not influence the diffusion rate, and their concentration distribution in the layer is the
same (curve 1).

Temperature distributions along the layer thickness are shown in Fig. 2. Curve 1 corresponds to a pure layer
exposed to a thermal radiation source whose temperature is Ts = 1000 K. It should be noted that the temperature
in the layer, just as the concentration of the diatomic NO impurity, depends on the radiation spectrum: as the
source temperature decreases, the absolute value of temperature increases and its distribution along the thickness
becomes more nonuniform. The presence of the diatomic nitric oxide impurity at the examined initial concentration
c0 = 0.001 practically does not influence the temperature in the layer, and its distribution is also represented by
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Fig. 4

curve 1. However, if in the layer there is a triatomic impurity of water at the same concentration, the temperature
in the layer increases (curve 2) compared to the temperature of the pure layer. This is due to the fact that the total
amount of radiation energy absorbed by the triatomic impurity is much larger than that absorbed by the diatomic
impurity.

Figure 3 shows distributions of stresses σxx = σyy in a layer with an impurity of NO at Ts = 1000 (curve 1),
2000 (curve 2), and 3000 K (curve 3). From Fig. 3 it follows that the stresses in the layer depend on the radiation
spectrum. However, their values do not depend on the presence of nitric oxide with concentration c0 = 0.001;
therefore, curves 1–3 also correspond to the stress distribution in the pure layer. It should be noted that the stress
state of the layer is determined by the level of thermal stresses and the concentration stresses and the stresses due to
the action of mass forces of radiation are negligibly small. Hence, because the temperature in the layer practically
does not depend on the presence of the diatomic NO impurity, the thermal stresses also do not depend on it.

Figure 4 shows distributions of stresses σxx = σyy in a pure layer (curve 1) and a layer with a water impurity
(curve 2) at Ts = 1000 K. From Fig. 4 it follows that unlike in the case where the layer contains diatomic nitric
oxide, the presence of triatomic water leads to an increase of stresses in the layer.

For real thermal-radiation parameters, determined by the temperature of the radiation source (fλ 6 1 at
Ts < 5000 K), and the absorption characteristics of the impurities considered, thermal diffusion phenomena and
ponderomotive forces practically do not influence the impurity concentration distribution in glass. This is due to
the insignificant temperature gradient of glass (see Fig. 2) and the forces fk ∼ αkλ(I+

λ − I
−
λ )∆λk(eff)/(c0ρ). Thus, for

the impurities considered, the force fk has values of 0.1–10.0 N/kg, i.e., it does not induce diffusion processes [27].
An analysis of the numerical results leads to the following conclusions. As in a pure glass layer, thermal

stresses in a glass layer with impurities increase as the temperature of the thermal radiation source decreases from
3000 to 1000 K under the same integral radiation flux delivered into the layer. In this case, the diffusion rate of a
diatomic impurity increases, whereas for a triatomic impurity, it remains practically constant. The increase in the
diffusion rate of a diatomic impurity due to the change of the radiation spectrum is accompanied by an increase of
thermal stresses.
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